Diferencia entre revisiones de «Temperatura»

De CreacionWiki
Saltar a: navegación, buscar
Línea 1: Línea 1:
 
{{traducción}}
 
{{traducción}}
 
[[File:Sun surface.jpg|thumb|300px|Images from Sun's surface by Solar Dynamics Observatory. False colors trace different gas temperatures. Reds are relatively cool (about 60,000 Kelvin, or 107,540 F); blues and greens are hotter (greater than 1 million Kelvin, or 1,799,540 F).]]
 
[[File:Sun surface.jpg|thumb|300px|Images from Sun's surface by Solar Dynamics Observatory. False colors trace different gas temperatures. Reds are relatively cool (about 60,000 Kelvin, or 107,540 F); blues and greens are hotter (greater than 1 million Kelvin, or 1,799,540 F).]]
'''Temperature''' is an average of the translational [[kinetic energy]] of the elementary particles of any [[pure substance]].<ref name=Jones1>Jones, Andrew Z. "[http://physics.about.com/od/glossary/g/temperature.htm Definition of Temperature]." <physics.about.com/>, n.d. Accessed June 26, 2008.</ref>
+
La '''temperatura''' es un promedio de la [[energía cinética]] de traslación de las partículas elementales de cualquier [[sustancia pura]].<ref name=Jones1>Jones, Andrew Z. "[http://physics.about.com/od/glossary/g/temperature.htm Definition of Temperature]." <physics.about.com/>, n.d. Consultado el 26 de junio 2008.</ref>
  
== Conceptual definition ==
+
== Definición conceptual ==
Under normal conditions, the elementary particles of any substance ([[atom]]s of a [[chemical element]], and [[molecule]]s of a [[chemical compound]]) will move randomly to some extent. Because they move, they have kinetic energy.
+
En condiciones normales, las partículas elementales de cualquier sustancia ([[átomo]]s de un [[elemento químico]], y [[molécula]]s de un [[compuesto químico]]) se mueven de forma aleatoria en cierta medida. Puesto que se mueven, tienen energía cinética.
  
[[Heat]] is the ''total'' kinetic energy that these particles have, or a measure of the ''transfer'' of such energy from one body to another. Temperature is the ''average'' of such energy and depends on the amount of substance present.
+
[[Calor]] es el ''total'' de energía cinética que estas partículas tienen, o una medida de la ''transferencia'' de dicha energía de un cuerpo a otro. La temperatura es el ''promedio'' de esta energía y depende de la cantidad de sustancia presente.
  
== Practical application ==
+
== Aplicación práctica ==
Temperature determines ''where heat will flow'' when two objects make contact. Heat will always flow from the object having the higher temperature to the object having the lower. Heat will ''not'' have a net flow between two objects whose temperature is the ''same''.
+
La temperatura determina ''donde el calor fluirá'' cuando dos objetos hacen contacto. El calor siempre fluirá desde el objeto que tiene la temperatura más alta para el objeto que tiene la temperatura menor. El calor ''no'' tiene un flujo neto entre dos objetos cuya temperatura es la ''misma''.
  
 
Furthermore, if any two objects are each at thermal equilibrium with a third object, i.e. have the same temperature as that third object, then they must be in thermal equilibrium with one another. Ralph H. Fowler recognized this transitive property of thermal equilibrium as the [[Zeroth Law of Thermodynamics]].<ref name=Jones2>Jones, Andrew Z. "[http://physics.about.com/od/thermodynamics/a/lawthermo.htm Laws of Thermodynamics]." <physics.about.com/>, n.d. Accessed June 26, 2008.</ref>
 
Furthermore, if any two objects are each at thermal equilibrium with a third object, i.e. have the same temperature as that third object, then they must be in thermal equilibrium with one another. Ralph H. Fowler recognized this transitive property of thermal equilibrium as the [[Zeroth Law of Thermodynamics]].<ref name=Jones2>Jones, Andrew Z. "[http://physics.about.com/od/thermodynamics/a/lawthermo.htm Laws of Thermodynamics]." <physics.about.com/>, n.d. Accessed June 26, 2008.</ref>

Revisión del 16:42 20 mar 2013

Icono de traducción.png
Este artículo o sección está siendo traducido. Puedes colaborar con la CreaciónWiki en la traducción desde el artículo original.
Images from Sun's surface by Solar Dynamics Observatory. False colors trace different gas temperatures. Reds are relatively cool (about 60,000 Kelvin, or 107,540 F); blues and greens are hotter (greater than 1 million Kelvin, or 1,799,540 F).

La temperatura es un promedio de la energía cinética de traslación de las partículas elementales de cualquier sustancia pura.[1]

Definición conceptual

En condiciones normales, las partículas elementales de cualquier sustancia (átomos de un elemento químico, y moléculas de un compuesto químico) se mueven de forma aleatoria en cierta medida. Puesto que se mueven, tienen energía cinética.

Calor es el total de energía cinética que estas partículas tienen, o una medida de la transferencia de dicha energía de un cuerpo a otro. La temperatura es el promedio de esta energía y depende de la cantidad de sustancia presente.

Aplicación práctica

La temperatura determina donde el calor fluirá cuando dos objetos hacen contacto. El calor siempre fluirá desde el objeto que tiene la temperatura más alta para el objeto que tiene la temperatura menor. El calor no tiene un flujo neto entre dos objetos cuya temperatura es la misma.

Furthermore, if any two objects are each at thermal equilibrium with a third object, i.e. have the same temperature as that third object, then they must be in thermal equilibrium with one another. Ralph H. Fowler recognized this transitive property of thermal equilibrium as the Zeroth Law of Thermodynamics.[2]

Absolute Temperature

Absolute zero is the temperature at which all random motion of the elementary particles of a substance ceases. By definition, no substance can possibly be colder than this.

The absolute temperature of any substance is the difference between the measured temperature, on any given scale, and absolute zero.

Scales

Comparison of Centigrade (Celsius) and Fahrenheit thermometer scales

Four different temperature scales are in common use today. Each one measures temperature with reference to one or more standard temperatures.

Fahrenheit

The Fahrenheit scale uses as its zero the freezing point of a supersaturated aqueous solution of sodium chloride. On this scale, the boiling point of water is 212 degrees.

Celsius

The Celsius or centigrade scale uses as its zero the freezing point of pure water. The boiling point on this scale is 100 degrees.

Kelvin

The Kelvin scale uses absolute zero as its zero. Its degrees describe the same interval as those on the Celsius scale, and therefore on this scale the freezing and boiling points of water are one hundred degrees apart.

Rankine

The Rankine scale also uses absolute zero as its zero. Its degrees describe the same interval as those on the Fahrenheit scale.

Conversions

To convert from Celsius to Fahrenheit, multiply the Celsius temperature by 9/5, and add 32, the Fahrenheit temperature of the freezing point of pure water.

To convert from Fahrenheit to Celsius, first subtract 32 from the Fahrenheit temperature and then multiply the result by 5/9.

To convert from Celsius to Kelvin, add 273.15 to the Celsius temperature. Absolute zero is 273.15 degrees Celsius below zero. (The Kelvin scale uses no degree symbol, and instead uses the letter K with no other symbol.)

To convert from Fahrenheit to Rankine, add 491.67 to the Fahrenheit temperature. Absolute zero is 459.67 degrees Fahrenheit below zero.

Referencias

  1. Jones, Andrew Z. "Definition of Temperature." <physics.about.com/>, n.d. Consultado el 26 de junio 2008.
  2. Jones, Andrew Z. "Laws of Thermodynamics." <physics.about.com/>, n.d. Accessed June 26, 2008.

Related link